12 resultados para stem cell

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High serum levels of Interleukin-6 (IL-6) correlate with poor outcome in breast cancer patients. However no data are available on the relationship between IL-6 and stem/progenitor cells which may fuel the genesis of breast cancer in vivo. Herein, we address this issue in mammospheres (MS), multi-cellular structures enriched in stem/progenitor cells of the mammary gland, and also in MCF-7 breast cancer cells. We show that MS from node invasive breast carcinoma tissues express IL-6 mRNA at higher levels than MS from matched non-neoplastic mammary glands. We find that IL-6 mRNA is detectable only in basal-like breast carcinoma tissues, an aggressive variant showing stem cell features. Our results reveal that IL-6 triggers a Notch-3-dependent up-regulation of the Notch ligand Jagged-1, whose interaction with Notch-3 promotes the growth of MS and MCF-7 derived spheroids. Moreover, IL-6 induces a Notch-3-dependent up-regulation of the carbonic anhydrase IX gene, which promotes a hypoxia-resistant/invasive phenotype in MCF-7 cells and MS. Finally, an autocrine IL-6 loop relies upon Notch-3 activity to sustain the aggressive features of MCF-7-derived hypoxia-selected cells. In conclusion, our data support the hypothesis that IL-6 induces malignant features in Notch-3 expressing, stem/progenitor cells from human ductal breast carcinoma and normal mammary gland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basal-like tumor is an aggressive breast carcinoma subtype that displays an expression signature similar to that of the basal/myoepithelial cells of the breast tissue. Basal-like carcinoma are characterized by over-expression of the Epidermal Growth Factor receptor (EGFR), high frequency of p53 mutations, cytoplasmic/nuclear localization of beta-catenin, overexpression of the Hypoxia inducible factor (HIF)-1alpha target Carbonic Anhydrase isoenzime 9 (CA9) and a gene expression pattern similar to that of normal and cancer stem cells, including the over-expression of the mammary stem cell markers CD44. In this study we investigated the role of p53, EGFR, beta-catenin and HIF-1alpha in the regulation of stem cell features and genes associated with the basal-like gene expression profile. The findings reported in this investigation indicate that p53 inactivation in ductal breast carcinoma cells leads to increased EGFR mRNA and protein levels. In our experimental model, EGFR overexpression induces beta-catenin cytoplasmatic stabilization and transcriptional activity and, by that, leads to increased aggressive features including mammosphere (MS) forming and growth capacity, invasive potential and overexpression of the mammary stem cell gene CD44. Moreover we found that EGFR/beta-catenin axis promotes hypoxia survival in breast carcinoma cells via increased CA9 expression. Indeed beta-catenin positively regulates CA9 expression upon hypoxia exposure. Interestingly we found that beta-catenin inhibits HIF-1alpha transcriptional activity. Looking for the mechanism, we found that CA9 expression is promoted by HIF-1alpha and cytoplasmatic beta-catenin further increased it post-transcriptionally, via direct mRNA binding and stabilization. These data reveal a functional beta-catenin/HIF-1alpha interplay among hallmarks of basal-like tumors and unveil a new functional role for cytoplasmic beta-catenin in the phenotype of such tumors. Therefore it can be proposed that the interplay here described among EGFR/beta-catenin and HIF-1alpha may play a role in breast cancer stem cell survival and function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigates two distinct research topics. The main topic (Part I) is the computational modelling of cardiomyocytes derived from human stem cells, both embryonic (hESC-CM) and induced-pluripotent (hiPSC-CM). The aim of this research line lies in developing models of the electrophysiology of hESC-CM and hiPSC-CM in order to integrate the available experimental data and getting in-silico models to be used for studying/making new hypotheses/planning experiments on aspects not fully understood yet, such as the maturation process, the functionality of the Ca2+ hangling or why the hESC-CM/hiPSC-CM action potentials (APs) show some differences with respect to APs from adult cardiomyocytes. Chapter I.1 introduces the main concepts about hESC-CMs/hiPSC-CMs, the cardiac AP, and computational modelling. Chapter I.2 presents the hESC-CM AP model, able to simulate the maturation process through two developmental stages, Early and Late, based on experimental and literature data. Chapter I.3 describes the hiPSC-CM AP model, able to simulate the ventricular-like and atrial-like phenotypes. This model was used to assess which currents are responsible for the differences between the ventricular-like AP and the adult ventricular AP. The secondary topic (Part II) consists in the study of texture descriptors for biological image processing. Chapter II.1 provides an overview on important texture descriptors such as Local Binary Pattern or Local Phase Quantization. Moreover the non-binary coding and the multi-threshold approach are here introduced. Chapter II.2 shows that the non-binary coding and the multi-threshold approach improve the classification performance of cellular/sub-cellular part images, taken from six datasets. Chapter II.3 describes the case study of the classification of indirect immunofluorescence images of HEp2 cells, used for the antinuclear antibody clinical test. Finally the general conclusions are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Leukemias, recent developments have demonstrated that the Hedgehog pathway plays a key-role in the peculiar ability of self renewal of leukemia stem cells. The aim of this research activity was to investigate, through a first in man, Phase I, open label, clinical trial, the role and the impact, mainly in terms of safety profile, adverse events and pharmacokinetics, of a Sonic Hedgehog inhibitor compound on a population of heavely pretreated patients affected by AML, CML, MF, or MDS, resistant or refractory to standard chemotherapy. Thirty-five patients have been enrolled. The drug was administered orally, in 28 days cycles, without rest periods. The compound showed a good safety profile. The half life was of 17-35 hours, justifying the daily administration. Significant signs of activity, in terms of reduction of bone marrow blast cell amount were seen in most of the patients enrolled. Interestingly, correlative biological studies demonstrated that, comparing the gene expression profyiling signature of separated CD34+ cells before and after one cycle of treatment, the most variably expressed genes were involved in the Hh pathway. Moreover, we observed that many genes involved in MDR (multidrug resistance)were significantly down regulated after treatment. These data might lead to future clinical trials based on combinatory approaches, including, for instance, Hh inhibitors and conventional chemotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gut microbiota (GM) is essential for human health and contributes to several diseases; indeed it can be considered an extension of the self and, together with the genetic makeup, determines the physiology of an organism. In this thesis has been studied the peripheral immune system reconstitution in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (aHSCT) in the early phase; in parallel, have been also explored the gut microbiota variations as one of the of primary factors in governing the fate of the immunological recovery, predisposing or protecting from complications such as the onset of acute graft-versus-host disease (GvHD). Has been demonstrated, to our knowledge for the first time, that aHSCT in pediatric patients is associated to a profound modification of the GM ecosystem with a disruption of its mutualistic asset. aGvHD and non-aGvHD subjects showed differences in the process of GM recovery, in members abundance of the phylum Bacteroidetes, and in propionate fecal concentration; the latter are higher in the pre-HSCT composition of non-GvHD subjects than GvHD ones. Short-chain fatty acids (SCFAs), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients and distribute systemically from the gut to blood. For this reason, has been studied their effect in vitro on human DCs, the key regulators of our immune system and the main player of aGvHD onset. Has been observed that propionate and, particularly, butyrate show a strong and direct immunomodulatory activity on DCs reducing inflammatory markers such as chemokines and interleukins. This study, with the needed caution, suggests that the pre-existing GM structure can be protective against aGvHD onset, exerting its protective role through SCFAs. They, indeed, may regulate cell traffic within secondary lymphoid tissues, influence T cell development during antigen recognition, and, thus, directly shape the immune system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid organ transplantation (SOT) is considered the treatment of choice for many end-stage organ diseases. Thus far, short term results are excellent, with patient survival rates greater than 90% one year post-surgery, but there are several problems with the long term acceptance and use of immunosuppressive drugs. Hematopoietic Stem Cells Transplantation (HSCT) concerns the infusion of haematopoietic stem cells to re-establish acquired and congenital disorders of the hematopoietic system. The main side effect is the Graft versus Host Disease (GvHD) where donor T cells can cause pathology involving the damage of host tissues. Patients undergoing acute or chronic GvHD receive immunosuppressive regimen that is responsible for several side effects. The use of immunosuppressive drugs in the setting of SOT and GvHD has markedly reduced the incidence of acute rejection and the tissue damage in GvHD however, the numerous adverse side effects observed boost the development of alternative strategies to improve the long-term outcome. To this effect, the use of CD4+CD25+FOXP3+ regulatory T cells (Treg) as a cellular therapy is an attractive approach for autoimmunity disease, GvHD and limiting immune responses to allograft after transplantation. Treg have a pivotal role in maintaining peripheral immunological tolerance, by preventing autoimmunity and chronic inflammation. Results of my thesis provide the characterization and cell processing of Tregs from healthy controls and patients in waiting list for liver transplantation, followed by the development of an efficient expansion-protocol and the investigation of the impact of the main immunosuppressive drugs on viability, proliferative capacity and function of expanded cells after expansion. The conclusion is that ex vivo expansion is necessary to infuse a high Treg dose and although many other factors in vivo can contribute to the success of Treg therapy, the infusion of Tregs during the administration of the highest dose of immunosuppressants should be carefully considered.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Advances in stem cell biology have challenged the notion that infarcted myocardium is irreparable. The pluripotent ability of stem cells to differentiate into specialized cell lines began to garner intense interest within cardiology when it was shown in animal models that intramyocardial injection of bone marrow stem cells (MSCs), or the mobilization of bone marrow stem cells with spontaneous homing to myocardium, could improve cardiac function and survival after induced myocardial infarction (MI) [1, 2]. Furthermore, the existence of stem cells in myocardium has been identified in animal heart [3, 4], and intense research is under way in an attempt to clarify their potential clinical application for patients with myocardial infarction. To date, in order to identify the best one, different kinds of stem cells have been studied; these have been derived from embryo or adult tissues (i.e. bone marrow, heart, peripheral blood etc.). Currently, three different biologic therapies for cardiovascular diseases are under investigation: cell therapy, gene therapy and the more recent “tissue-engineering” therapy . During my Ph.D. course, first I focalised my study on the isolation and characterization of Cardiac Stem Cells (CSCs) in wild-type and transgenic mice and for this purpose I attended, for more than one year, the Cardiovascular Research Institute of the New York Medical College, in Valhalla (NY, USA) under the direction of Doctor Piero Anversa. During this period I learnt different Immunohistochemical and Biomolecular techniques, useful for investigating the regenerative potential of stem cells. Then, during the next two years, I studied the new approach of cardiac regenerative medicine based on “tissue-engineering” in order to investigate a new strategy to regenerate the infracted myocardium. Tissue-engineering is a promising approach that makes possible the creation of new functional tissue to replace lost or failing tissue. This new discipline combines isolated functioning cells and biodegradable 3-dimensional (3D) polymeric scaffolds. The scaffold temporarily provides the biomechanical support for the cells until they produce their own extracellular matrix. Because tissue-engineering constructs contain living cells, they may have the potential for growth and cellular self-repair and remodeling. In the present study, I examined whether the tissue-engineering strategy within hyaluron-based scaffolds would result in the formation of alternative cardiac tissue that could replace the scar and improve cardiac function after MI in syngeneic heterotopic rat hearts. Rat hearts were explanted, subjected to left coronary descending artery occlusion, and then grafted into the abdomen (aorta-aorta anastomosis) of receiving syngeneic rat. After 2 weeks, a pouch of 3 mm2 was made in the thickness of the ventricular wall at the level of the post-infarction scar. The hyaluronic scaffold, previously engineered for 3 weeks with rat MSCs, was introduced into the pouch and the myocardial edges sutured with few stitches. Two weeks later we evaluated the cardiac function by M-Mode echocardiography and the myocardial morphology by microscope analysis. We chose bone marrow-derived mensenchymal stem cells (MSCs) because they have shown great signaling and regenerative properties when delivered to heart tissue following a myocardial infarction (MI). However, while the object of cell transplantation is to improve ventricular function, cardiac cell transplantation has had limited success because of poor graft viability and low cell retention, that’s why we decided to combine MSCs with a biopolimeric scaffold. At the end of the experiments we observed that the hyaluronan fibres had not been substantially degraded 2 weeks after heart-transplantation. Most MSCs had migrated to the surrounding infarcted area where they were especially found close to small-sized vessels. Scar tissue was moderated in the engrafted region and the thickness of the corresponding ventricular wall was comparable to that of the non-infarcted remote area. Also, the left ventricular shortening fraction, evaluated by M-Mode echocardiography, was found a little bit increased when compared to that measured just before construct transplantation. Therefore, this study suggests that post-infarction myocardial remodelling can be favourably affected by the grafting of MSCs delivered through a hyaluron-based scaffold

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stem cells are one of the most fascinating areas of biology today, and since the discover of an adult population, i.e., adult Stem Cells (aSCs), they have generated much interest especially for their application potential as a source for cell based regenerative medicine and tissue engineering. aSCs have been found in different tissues including bone marrow, skin, intestine, central nervous system, where they reside in a special microenviroment termed “niche” which regulate the homeostasis and repair of adult tissues. The arterial wall of the blood vessels is much more plastic than ever before believed. Several animal studies have demonstrated the presence of cells with stem cell characteristics within the adult vessels. Recently, it has been also hypothesized the presence of a “vasculogenic zone” in human adult arteries in which a complete hierarchy of resident stem cells and progenitors could be niched during lifetime. Accordingly, it can be speculated that in that location resident mesenchymal stem cells (MSCs) with the ability to differentiate in smooth muscle cells, surrounding pericytes and fibroblasts are present. The present research was aimed at identifying in situ and isolating MSCs from thoracic aortas of young and healthy heart-beating multiorgan donors. Immunohistochemistry performed on fresh and frozen human thoracic aortas demonstrated the presence of the vasculogenic zone between the media and the adventitial layers in which a well preserved plexus of CD34 positive cells was found. These cells expressed intensely HLA-I antigens both before and after cryopreservation and after 4 days of organ cultures remained viable. Following these preliminary results, we succeeded to isolate mesenchymal cells from multi-organ thoracic aortas using a mechanical and enzymatic combined procedure. Cells had phenotypic characteristics of MSC i.e., CD44+, CD90+, CD105+, CD166+, CD34low, CD45- and revealed a transcript expression of stem cell markers, e.g., OCT4, c-kit, BCRP-1, IL6 and BMI-1. As previously documented using bone marrow derived MSCs, resident vascular wall MSCs were able to differentiate in vitro into endothelial cells in the presence of low-serum supplemented with VEGF-A (50 ng/ml) for 7 days. Under the condition described above, cultured cells showed an increased expression of KDR and eNOS, down-regulation of the CD133 transcript, vWF expression as documented by flow cytometry, immunofluorescence, qPCR and TEM. Moreover, matrigel assay revealed that VEGF induced cells were able to form capillary-like structures within 6 hours of seeding. In summary, these findings indicate that thoracic aortas from heart-beating, multi-organ donors are highly suitable for obtaining MSCs with the ability to differentiate in vitro into endothelial cells. Even though their differentiating potential remains to be fully established, it is believed that their angiogenic ability could be a useful property for allogenic use. These cells can be expanded rapidly, providing numbers which are adequate for therapeutic neovascularization; furthermore they can be cryostored in appropriate cell banking facilities for later use.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Critical lower limb ischemia is a severe disease. A common approach is infrainguinal bypass. Synthetic vascular prosthesis, are good conduits in high-flow low-resistance conditions but have difficulty in their performance as small diameter vessel grafts. A new approach is the use of native decellularized vascular tissues. Cell-free vessels are expected to have improved biocompatibility when compared to synthetic and are optimal natural 3D matrix templates for driving stem cell growth and tissue assembly in vivo. Decellularization of tissues represent a promising field for regenerative medicine, with the aim to develop a methodology to obtain small-diameter allografts to be used as a natural scaffold suited for in vivo cell growth and pseudo-tissue assembly, eliminating failure caused from immune response activation. Material and methods. Umbilical cord-derived mesenchymal cells isolated from human umbilical cord tissue were expanded in advanced DMEM. Immunofluorescence and molecular characterization revealed a stem cell profile. A non-enzymatic protocol, that associate hypotonic shock and low-concentration ionic detergent, was used to decellularize vessel segments. Cells were seeded cell-free scaffolds using a compound of fibrin and thrombin and incubated in DMEM, after 4 days of static culture they were placed for 2 weeks in a flow-bioreactor, mimicking the cardiovascular pulsatile flow. After dynamic culture, samples were processed for histological, biochemical and ultrastructural analysis. Discussion. Histology showed that the dynamic culture cells initiate to penetrate the extracellular matrix scaffold and to produce components of the ECM, as collagen fibres. Sirius Red staining showed layers of immature collagen type III and ultrastructural analysis revealed 30 nm thick collagen fibres, presumably corresponding to the immature collagen. These data confirm the ability of cord-derived cells to adhere and penetrate a natural decellularized tissue and to start to assembly into new tissue. This achievement makes natural 3D matrix templates prospectively valuable candidates for clinical bypass procedures

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pancreatic islet transplantation represents a fascinating procedure that, at the moment, can be considered as alternative to standard insulin treatment or pancreas transplantation only for selected categories of patients with type 1 diabetes mellitus. Among the factors responsible for leading to poor islet engraftment, hypoxia plays an important role. Mesenchymal stem cells (MSCs) were recently used in animal models of islet transplantation not only to reduce allograft rejection, but also to promote revascularization. Currently adipose tissue represents a novel and good source of MSCs. Moreover, the capability of adipose-derived stem cells (ASCs) to improve islet graft revascularization was recently reported after hybrid transplantation in mice. Within this context, we have previously shown that hyaluronan esters of butyric and retinoic acids can significantly enhance the rescuing potential of human MSCs. Here we evaluated whether ex vivo preconditioning of human ASCs (hASCs) with a mixture of hyaluronic (HA), butyric (BU), and retinoic (RA) acids may result in optimization of graft revascularization after islet/stem cell intrahepatic cotransplantation in syngeneic diabetic rats. We demonstrated that hASCs exposed to the mixture of molecules are able to increase the secretion of vascular endothelial growth factor (VEGF), as well as the transcription of angiogenic genes, including VEGF, KDR (kinase insert domain receptor), and hepatocyte growth factor (HGF). Rats transplanted with islets cocultured with preconditioned hASCs exhibited a better glycemic control than rats transplanted with an equal volume of islets and control hASCs. Cotransplantation with preconditioned hASCs was also associated with enhanced islet revascularization in vivo, as highlighted by graft morphological analysis. The observed increase in islet graft revascularization and function suggests that our method of stem cell preconditioning may represent a novel strategy to remarkably improve the efficacy of islets-hMSCs cotransplantation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Host-Pathogen Interaction is a very vast field of biological sciences, indeed every year many un- known pathogens are uncovered leading to an exponential growth of this field. The present work lyes between its boundaries, touching different aspects of host-pathogen interaction: We have evaluate the permissiveness of Mesenchimal Stem cell (FM-MSC from now on) to all known human affecting herpesvirus. Our study demonstrate that FM-MSC are full permissive to HSV1, HSV2, HCMV and VZV. On the other hand HHV6, HHV7, EBV and HHV8 are susceptible, but failed to activate a lytic infection program. FM-MSC are pluripotent stem cell and have been studied intensely in last decade. FM-MSC are employed in some clinical applications. For this reason it is important to known the degree of susceptibility to transmittable pathogens. Our atten- tion has then moved to bacterial pathogens: we have performed a proteome-wide in silico analy- sis of Chlamydiaceae family, searching for putative Nuclear localization Signal (NLS). Chlamy- diaceae are a family of obligate intracellular parasites. It’s reasonably to think that its members could delivered to nucleus effector proteins via NLS sequences: if that were the case the identifi- cation of NLS carrying proteins could open the way to therapeutic approaches. Our results strengthen this hypothesis: we have identified 72 protein bearing NLS, and verified their func- tionality with in vivo assays. Finally we have conceived a molecular scissor, creating a fusion protein between HIV-1 IN protein and FokI catalytic domain (a deoxyexonuclease domain). Our aim is to obtain chimeric enzyme (trojIN) which selectively identify IN naturally occurring target (HIV LTR sites) and cleaves subsequently LTR carrying DNA (for example integrated HIV1 DNA). Our preliminary results are promising since we have identified trojIN mutated version capable to selectively recognize LTR carrying DNA in an in vitro experiments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Derivation of stem cell lines from domesticated animals has been of great interest as it benefits translational medicine, clinical applications to improve human and animal health and biotechnology. The main types of stem cells studied are Embryonic Stem Cells (ESCs), induced Pluripotent Stem Cells (iPSCs) and Mesenchymal Stem/Stromal Cells (MSCs). This thesis had two main aims: (I) The isolation of bovine MSCs from amniotic fluid (AF) at different trimesters of pregnancy and their characterization to study pluripotency markers expression. Stemness markers were studied also in MSCs isolated from equine AF, Wharton’s jelly (WJ) and umbilical cord blood (UCB) as continuation of the characterization of these cells previously performed by our research group; (II) The establishment and characterization of iPSCs lines in two attractive large animal models for biomedical and biotechnology research such as the bovine and the swine, and the differentiation into the myogenic lineage of porcine iPSCs. It was observed that foetal tissues in domestic animals such as the bovine and the horse represent a source of MSCs able to differentiate into the mesodermal lineage but they do not proliferate indefinitely and they lack the expression of many pluripotency markers, making them an interesting source of cells for regenerative medicine, but not the best candidate to elucidate pluripotency networks. The protocol used to induce pluripotency in bovine fibroblasts did not work, as well as the chemical induction of pluripotency in porcine fibroblasts, while the reprogramming protocol used for porcine iPSCs was successful and the line generated was amenable to being differentiated into the myogenic lineage, demonstrating that they could be addressed into a desired lineage by genetic modification and appropriated culture conditions. Only a few cell types have been differentiated from domestic animal iPSCs to date, so the development of a reliable directed-differentiation protocol represents a very important result.